The with_regions
argument
Use the with_regions
argument (default
NULL
) in convertGDP
to convert aggregated GDP
data, e.g. regional-level data.
with_regions =
a data-frame with a country-to-region
mapping
If passed a data-frame with a country-to-region mapping, then custom
regional codons will be recognized. The data-frame should have two
columns, one named “iso3c” with iso3c country codes, and one named
“region” with the corresponding region codes. The conversion of regional
values is then undertaken by disaggregating the regions to a country
level using the mapping, and weighed by the GDP shares of countries
within that region in the base year of unit_in
(to compute
the shares, the source object needs to have GDP data for the countries
within the region).
library(GDPuc)
my_gdp <- tibble::tibble(
iso3c = "EUR",
year = 2010:2014,
value = 100:104
)
my_mapping_data_frame <- tibble::tibble(
iso3c = c("DEU", "FRA", "ESP", "ITA"),
region = "EUR"
)
convertGDP(
gdp = my_gdp,
unit_in = "constant 2005 Int$PPP",
unit_out = "constant 2017 Int$PPP",
with_regions = my_mapping_data_frame,
verbose = TRUE
)
#> ℹ Dissaggreagting regions using GDP in constant 2005 Int$PPP as weights.
#> ℹ Converting GDP with conversion factors from wb_wdi:
#> constant 2005 Int$PPP → constant 2005 LCU
#> 2005 PPP conversion factors in (LCU per international $) used:
#> DEU: 0.872721
#> ESP: 0.769508
#> FRA: 0.916458
#> ITA: 0.855139
#> constant 2005 LCU → constant 2017 LCU
#> 2017 value of base 2005 GDP deflators in (constant 2017 LCU per constant 2005
#> LCU) used:
#> DEU: 1.17967
#> ESP: 1.1273
#> FRA: 1.14739
#> ITA: 1.18511
#> constant 2017 LCU → constant 2017 Int$PPP
#> 2017 PPP conversion factors in (LCU per international $) used:
#> DEU: 0.744783
#> ESP: 0.630839
#> FRA: 0.770109
#> ITA: 0.689895
#> # A tibble: 5 × 3
#> iso3c year value
#> <chr> <int> <dbl>
#> 1 EUR 2010 140.
#> 2 EUR 2011 141.
#> 3 EUR 2012 142.
#> 4 EUR 2013 144.
#> 5 EUR 2014 145.
with_regions =
a string with a madrat
regionmapping
If passed a string, then a corresponding regionmapping will be loaded
with madrat::toolGetMapping
. Requires madrat to be
installed, and the regionmapping to exist.
my_gdp <- tibble::tibble(
iso3c = "EUR",
value = 100
)
convertGDP(
gdp = my_gdp,
unit_in = "constant 2005 Int$PPP",
unit_out = "constant 2017 Int$PPP",
with_regions = "regionmappingH12.csv"
)
#> # A tibble: 1 × 2
#> iso3c value
#> <chr> <dbl>
#> 1 EUR 138.