The source
argument
Use the source
argument in convertGDP
to
control the source of the underlying conversion factors (GDP deflators,
MERs and PPPs). This can be one of the sources shipped with the package
or a user-defined object.
Package internal ‘sources’
There are two source
options shipped with the package,
wb_wdi
and wb_wdi_linked
, with
wb_wdi
set as the default. Pass the name of a
shipped source to the source argument to use it.
library(GDPuc)
my_gdp <- tibble::tibble(
iso3c = "USA",
year = 2010:2014,
value = 100:104
)
convertGDP(
gdp = my_gdp,
unit_in = "constant 2010 LCU",
unit_out = "constant 2014 Int$PPP",
source = "wb_wdi_linked",
verbose = TRUE
)
#> ℹ Converting GDP with conversion factors from wb_wdi_linked:
#> constant 2010 LCU → constant 2014 LCU
#> 2014 value of base 2010 GDP deflator in (constant 2014 LCU per constant 2010
#> LCU) used:
#> USA: 1.07786
#> constant 2014 LCU → constant 2014 Int$PPP
#> 2014 PPP conversion factor in (LCU per international $) used:
#> USA: 1
#> # A tibble: 5 × 3
#> iso3c year value
#> <chr> <int> <dbl>
#> 1 USA 2010 108.
#> 2 USA 2011 109.
#> 3 USA 2012 110.
#> 4 USA 2013 111.
#> 5 USA 2014 112.
Use the function print_source_info
to print information
on a specific, or all available sources.
print_source_info("wb_wdi")
#> ── wb_wdi ──────────────────────────────────────────────────────────────────────
#> → Origin: The World Bank's World Development Indicator Database
#> → Date: Downloaded on the 30th of April 2024
#> → Html: https://databank.worldbank.org/source/world-development-indicators
#> → Note: Uses the GDP deflator.
#> ────────────────────────────────────────────────────────────────────────────────
print_source_info()
#> ℹ Sources available:
#> ── wb_wdi ──────────────────────────────────────────────────────────────────────
#> → Origin: The World Bank's World Development Indicator Database
#> → Date: Downloaded on the 30th of April 2024
#> → Html: https://databank.worldbank.org/source/world-development-indicators
#> → Note: Uses the GDP deflator.
#> ────────────────────────────────────────────────────────────────────────────────
#> ── wb_wdi_linked ───────────────────────────────────────────────────────────────
#> → Origin: The World Bank's World Development Indicator Database
#> → Date: Downloaded on the 30th of April 2024
#> → Html: https://databank.worldbank.org/source/world-development-indicators
#> → Note: Uses the linked GDP deflator.
#> ────────────────────────────────────────────────────────────────────────────────
#> ── wb_wdi_cpi ──────────────────────────────────────────────────────────────────
#> → Origin: The World Bank's World Development Indicator Database
#> → Date: Downloaded on the 30th of April 2024
#> → Html: https://databank.worldbank.org/source/world-development-indicators
#> → Note: Uses the CPI as deflator.
#> ────────────────────────────────────────────────────────────────────────────────
Use the :::
operator to take a closer look at sources
shipped with GDPuc.
GDPuc:::wb_wdi
User-defined ‘source’ objects
Any tibble with columns:
- “iso3c” (character),
- “year” (numeric),
- “GDP deflator” (numeric),
- “MER (LCU per US$)” (numeric),
- “PPP conversion factor, GDP (LCU per international $)” (numeric)
can be used as a source of conversion factors.
my_custom_source <- tibble::tibble(
iso3c = "USA",
year = 2010:2014,
"GDP deflator" = seq(1, 1.1, 0.025),
"MER (LCU per US$)" = 1,
"PPP conversion factor, GDP (LCU per international $)" = 1,
)
print(my_custom_source)
#> # A tibble: 5 × 5
#> iso3c year `GDP deflator` `MER (LCU per US$)` PPP conversion factor, GDP (L…¹
#> <chr> <int> <dbl> <dbl> <dbl>
#> 1 USA 2010 1 1 1
#> 2 USA 2011 1.02 1 1
#> 3 USA 2012 1.05 1 1
#> 4 USA 2013 1.08 1 1
#> 5 USA 2014 1.1 1 1
#> # ℹ abbreviated name: ¹`PPP conversion factor, GDP (LCU per international $)`
convertGDP(
gdp = my_gdp,
unit_in = "constant 2010 LCU",
unit_out = "constant 2014 Int$PPP",
source = my_custom_source,
verbose = TRUE
)
#> ℹ Converting GDP with conversion factors from user_provided:
#> constant 2010 LCU → constant 2014 LCU
#> 2014 value of base 2010 GDP deflator in (constant 2014 LCU per constant 2010
#> LCU) used:
#> USA: 1.1
#> constant 2014 LCU → constant 2014 Int$PPP
#> 2014 PPP conversion factor in (LCU per international $) used:
#> USA: 1
#> # A tibble: 5 × 3
#> iso3c year value
#> <chr> <int> <dbl>
#> 1 USA 2010 110
#> 2 USA 2011 111.
#> 3 USA 2012 112.
#> 4 USA 2013 113.
#> 5 USA 2014 114.
The use_USA_cf_for_all
argument
In some cases it may be desirable to use the US conversion factors
for all countries. For instance, when converting global scenario data
from modelling efforts, in US$MER, to another base year. Setting the
use_USA_cf_for_all
to TRUE
ensures that all
countries are converted with the US conversion factors.
my_gdp <- tibble::tibble(
iso3c = c("USA", "IND"),
value = 100
)
# Normal conversion, with country specific conversion factors
convertGDP(
gdp = my_gdp,
unit_in = "constant 2005 US$MER",
unit_out = "constant 2020 US$MER",
verbose = TRUE
)
#> ℹ Converting GDP with conversion factors from wb_wdi:
#> constant 2005 US$MER → constant 2005 LCU
#> 2005 MERs in (LCU per US$) used:
#> IND: 44.2736
#> USA: 1
#> constant 2005 LCU → constant 2020 LCU
#> 2020 value of base 2005 GDP deflators in (constant 2020 LCU per constant 2005
#> LCU) used:
#> IND: 2.35925
#> USA: 1.30033
#> constant 2020 LCU → constant 2020 US$MER
#> 2020 MERs in (LCU per US$) used:
#> IND: 74.225
#> USA: 1
#> # A tibble: 2 × 2
#> iso3c value
#> <chr> <dbl>
#> 1 USA 130.
#> 2 IND 141.
# Using the US conversion factors for both countries
convertGDP(
gdp = my_gdp,
unit_in = "constant 2005 US$MER",
unit_out = "constant 2020 US$MER",
use_USA_cf_for_all = TRUE,
verbose = TRUE
)
#> ℹ Converting GDP with conversion factors from wb_wdi:
#> constant 2005 US$MER → constant 2005 LCU
#> 2005 MERs in (LCU per US$) used:
#> IND: 1
#> USA: 1
#> constant 2005 LCU → constant 2020 LCU
#> 2020 value of base 2005 GDP deflators in (constant 2020 LCU per constant 2005
#> LCU) used:
#> IND: 1.30033
#> USA: 1.30033
#> constant 2020 LCU → constant 2020 US$MER
#> 2020 MERs in (LCU per US$) used:
#> IND: 1
#> USA: 1
#> # A tibble: 2 × 2
#> iso3c value
#> <chr> <dbl>
#> 1 USA 130.
#> 2 IND 130.