Skip to content

Build biomass potential

Build biomass potential data for energy system modeling.

This module processes biomass resource data and calculates biomass potential for different regions and technologies in the PyPSA-China model.

build_biomass_potential_xing(biomass_potentials_path)

Build potential from Xing et al. https://doi.org/10.1038/s41467-021-23282-x

Parameters:

Name Type Description Default
biomass_potentials_path PathLike

the path to the Xing SI data (xlsx).

required
Source code in workflow/scripts/build_biomass_potential.py
def build_biomass_potential_xing(biomass_potentials_path: PathLike):
    """Build potential from Xing et al. https://doi.org/10.1038/s41467-021-23282-x

    Args:
        biomass_potentials_path (PathLike, optional): the path to the Xing SI data (xlsx).
    """

    df = read_xing_si_data(biomass_potentials_path)

    # select only relevant part of potential
    df = df[df.columns[df.columns.str.contains("Agricultural residues burnt as waste")]].sum(axis=1)

    # convert t biomass yr-1 to MWh, heat content is from paper reference 92
    heat_content = 19  # GJ (t biomass−1)
    heat_content *= 1000 / 3600  # GJ/t -> MWh
    df = df * heat_content

    return df

estimate_co2_intensity_xing()

Estimate the biomass Co2 intensity from the Xing paper

Returns:

Name Type Description
float float

the biomass co2 intensity in t/MWhth

Source code in workflow/scripts/build_biomass_potential.py
def estimate_co2_intensity_xing() -> float:
    """Estimate the biomass Co2 intensity from the Xing paper

    Returns:
        float: the biomass co2 intensity in t/MWhth
    """

    biomass_potential_tot = 3.04  # Gt
    embodied_co2_tot = 5.24  # Gt
    heat_content = 19 * 1000 / 3600  # GJ/t -> MWh_th/t
    unit_co2 = embodied_co2_tot / biomass_potential_tot  # t CO2/t biomass
    co2_intens = unit_co2 / heat_content  # t CO2/MWh_th

    return co2_intens

read_xing_si_data(biomass_potentials_path)

Read and prepare the xing SI data

Parameters:

Name Type Description Default
biomass_potentials_path PathLike

the path to the Xing SI data (xlsx).

required
Source code in workflow/scripts/build_biomass_potential.py
def read_xing_si_data(biomass_potentials_path: PathLike):
    """Read and prepare the xing SI data

    Args:
        biomass_potentials_path (PathLike): the path to the Xing SI data (xlsx).
    """
    # data is indexed by province and county
    df = pd.read_excel(biomass_potentials_path, sheet_name="supplementary data 1")
    df = df.groupby("Province name").sum()

    df = df.rename(index={"Inner-Monglia": "InnerMongolia", "Anhui ": "Anhui"})
    df = df.add_suffix(" biomass")

    return df