Plot inputs visualisation
Plot input data visualizations for model validation and analysis.
This module creates geographical and statistical visualizations of input data including renewable resources, demand patterns, and infrastructure data.
plot_average_distances(distances, ax=None)
Plot the average distances to the node (region com/repr point) for each vre class Args: distances (xr.DataArray): the average distances for each class to the node ax (plt.Axes, optional): the axes to plot on. Defaults to None.
Returns:
| Type | Description |
|---|---|
tuple[Figure, Axes]
|
tuple[plt.Figure, plt.Axes]: the figure and axes |
Source code in workflow/scripts/plot_inputs_visualisation.py
plot_resource_class_bins(resource_classes, regions, technology, ax=None)
Map of VRE grades (by grade/ bin number) for each node Args: resource_classes (gpd.GeoDataFrame): the resource classes regions (gpd.GeoDataFrame): the regions/node regions technology (str): the technology name ax (plt.Axes, optional): the axes to plot on. Defaults to None.
Returns:
| Type | Description |
|---|---|
tuple[Figure, Axes]
|
tuple[plt.Figure, plt.Axes]: the figure and axes |
Source code in workflow/scripts/plot_inputs_visualisation.py
plot_resource_class_cfs(resource_classes, regions, technology, ax=None)
Map of VRE capacity factors for each node and vre grade Args: resource_classes (gpd.GeoDataFrame): the resource classes regions (gpd.GeoDataFrame): the regions/node regions technology (str): the technology name ax (plt.Axes, optional): the axes to plot on. Defaults to None.
Returns:
| Type | Description |
|---|---|
|
tuple[plt.Figure, plt.Axes]: the figure and axes |